SIEMENS

Data sheet 6XV1840-2AH10

product description

Standard bus cable (4-core), sold by the meter, unassembled

Industrial Ethernet FC TP Standard cable, GP 2x2 (PROFINET Type A), TP installation cable for connection to IE FC RJ45 2x2, for universal use, 4-core, shielded CAT 5E, sold by the meter, delivery unit max. 4000 m minimum order quantity 20 m.

suitability for use	Standard cable with rigid cores for fast installation
cable designation	2YY (ST) CY 2x2x0,64/1,5-100 GN SF/UTP
electrical data	
attenuation factor per length	
• at 10 MHz / maximum	0.052 dB/m
• at 100 MHz / maximum	0.195 dB/m
impedance	
• at 1 MHz 100 MHz	100 Ω
relative symmetrical tolerance	
• of the characteristic impedance at 1 MHz 100 MHz	15 %
near-end crosstalk per length	
● at 1 MHz 100 MHz	0.5 dB/m
transfer impedance per length / at 10 MHz	10 mΩ/m
loop resistance per length / maximum	115 mΩ/m
operating voltage	
RMS value	80 V
NVP value in percent	69 %
mechanical data	
number of electrical cores	4
design of the shield	Overlapped aluminum-clad foil, sheathed in a braided screen of tin-plated copper wires
type of electrical connection / FastConnect	Yes
core diameter	
of AWG22 insulated conductor	0.64 mm
outer diameter	
of inner conductor	0.64 mm
of the wire insulation	1.5 mm
 of the inner sheath of the cable 	3.9 mm
of cable sheath	6.5 mm
symmetrical tolerance of the outer diameter / of cable sheath	0.2 mm
material	
 of the wire insulation 	polyethylene (PE)
 of the inner sheath of the cable 	PVC
of cable sheath	PVC
color	
 of the insulation of data wires 	white/yellow/blue/orange
of cable sheath	green
bending radius	
 with single bend / minimum permissible 	19.5 mm

ling to DIN VDE 0472
ding to DIN VDE 0472 Dry C) and UL 1685 (CSA
ory C) and OL 1005 (CSA
S
2
trial authoroccurity functions
trial cybersecurity functions machines and networks. Stworks against cyber susly maintain – a holistic, mens' products and Customers are responsible ystems, machines and s should only be connected extent such a connection is ures (e.g. firewalls and/or information on industrial lease visit products and solutions the secure. Siemens strongly on as they are available in product versions that are
machines machines works agusly maint mens' products should o extent sucures (e.g. aformation lease visii products e secure. on as they

Approvals / Certificates

General Product Approval

Manufacturer Declaration

Declaration of Conformity

Test Certificates	Environment	Industrial Communication	
Special Test Certificate	Confirmation	PROFINET	
last modified:		3/25/2024 🗗	