Detailed Specifications & Technical Data

9L26026 Flat - Gray Ribbon 9L260XX Series

For more Information please call

1-800-Belden1

General Description:

Belden^s .050" pitch gray ribbon cable was designed for general purpose electronic interconnect applications. The cable provides reliable mass-termination to standard IDC connectors.

Physical Characteristics (Overall)						
Conductor AWG:						
# Conductors AWG Stranding Conductor Material						
26 26 7x34 TC - Tinned Copper						
Total Number of Conductors:	26					
Conductor Spacing Center to Center:	.050					
Insulation						
Insulation Material: Insulation Material Wall Thickness (in.)						
PVC - Polyvinyl Chloride .010						
Insulation Resistance:	>10,000 Megaohms					
Outer Shield						
Outer Shield Material Outer Shield Material						
Unshielded						
Overall Cable						
Overall Nominal Thickness:	.039					
Overall Nominal Width:	1.30					
Mechanical Characteristics (Overall)						
Operating Temperature Range:	-40°C To +105°C					
Bulk Cable Weight:	43 lbs/1000 ft.					
Min. Bend Radius/Minor Axis:	0.500 in.					
Applicable Specifications and Agency Complian	nce (Overall)					
Applicable Standards & Environmental Programs						
UL Rating:	105°C, 300 V RMS, VW-1					
CSA Specification:	AWM I A					
EU Directive 2011/65/EU (ROHS II):	Yes					
EU CE Mark:	Yes					
EU Directive 2000/53/EC (ELV):	Yes					
EU Directive 2002/95/EC (RoHS):	Yes					
EU RoHS Compliance Date (mm/dd/yyyy):	07/01/2005					
EU Directive 2002/96/EC (WEEE):	Yes					
EU Directive 2003/11/EC (BFR):	Yes					
CA Prop 65 (CJ for Wire & Cable):	Yes					
MII Order #39 (China RoHS):	Yes					
Flame Test						
UL Flame Test:	VW-1					
CSA Flame Test:	FT1					
Plenum/Non-Plenum						
Plenum (Y/N):	No					

Detailed Specifications & Technical Data

9L26026 Flat - Gray Ribbon 9L260XX Series

Nom. Characteristic Description Imp (GS) 135 (GSG) 90 Nom. Inductance: Description @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG) Nominal Velocity of	Inductance (µH/ft) 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 23 23 11 23 23 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25					
Nom. Characteristic Description Imp (GS) 135 (GSG) 90 Nom. Inductance: Description @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	Inductance (µH/ft) 23 Conductor to Conduct Capacitance (pF/ft) 23 11					
Description Imp. (GS) 135 (GSG) 90 Nom. Inductance: Description @ @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance O Description @ @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG) Windth (GSG) Method (GSG)	Inductance (µH/ft) 23 Conductor to Conduct Capacitance (pF/ft) 23 11	lor:				
(GS) 135 (GSG) 90 Nom. Inductance: Description @ 1 MHz (GS) @ @ 1 MHz (GSG) Nom. Capacitance C Description @ @ 1 kHz (GSG) @ @ 1 MHz (GSG) @ Wominal Velocity of Nominal Velocity of	Inductance (µH/ft) .23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	tor:				
(GSG) 90 Nom. Inductance: Description @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG) @ 1 MHz (GSG)	Inductance (µH/ft) .23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	tor:				
Nom. Inductance: Description @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	.23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	lor:				
Description @ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	.23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	lor:				
@ 1 MHz (GS) @ 1 MHz (GSG) Wom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GS) @ 1 MHz (GS) Wominal Velocity of	.23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	tor:				
@ 1 MHz (GS) @ 1 MHz (GSG) Nom. Capacitance C Description @ 1 KHz (GSG) @ 1 MHz (GS) We are the second s	.23 .15 Conductor to Conduct Capacitance (pF/ft) 23 11	lor:				
@ 1 MHz (GSG) Jom. Capacitance C Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GS) @ 1 MHz (GSG) Wominal Velocity of	Conductor to Conduct Capacitance (pF/ft) 23 11	tor:				
Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	Capacitance (pF/ft) 23 11	tor:				
Description @ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	Capacitance (pF/ft) 23 11					
@ 1 kHz (GSG) @ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	23 11					
@ 1 MHz (GS) @ 1 MHz (GSG) Nominal Velocity of	11					
@ 1 MHz (GSG) Iominal Velocity of						
Iominal Velocity of	18					
D 1 (1)(D)						
Description VP (
	,					
Iominal Delay:	_					
Delay (ns/ft)						
1.48 NS/FT. (GSC	G)					
lom. Conductor DC	C Resistance:					
DCR @ 20°C (Oh	nm/1000 ft)					
43 OHMS/1000 F	T. MAX.					
lom. Attenuation:						
	enuation (dB/100 ft.)					
10 3.9						
20 6.4						
30 8.7						
40 13						
50 16.9	9					
60 20.1						
70 22.5						
80 23.9	9					
90 25.1	1					
100 26.4	1					
lax. Operating Volt	tago III :					
Voltage	uge 01.					
300 V RMS						
lax. Recommended	d Current:					
Current						
1.5 Amps per con	iductor @ 20°C					
Dielectric With	stand Voltage:		2,000 V RMS			
ypical Unbalanced	-					
Description		NS) (MHz) Near End %	(MHz) Far End % (MHz)			
10 ft. sample leng		5.2	6.2			
10 ft. sample leng		4.2	5			
10 ft. sample leng		3.3	3.8			
. • 5						
otes (Overall)						
		C=Cround Signal Crown	d Modo			
Notes: GS=Gro	ound-Signal Mode; GS	G=Ground-Signal-Groun				
olarity Identifi	cation (Overall)					
Polarity Identif				Y STRIPE ON #1 CONDUCT)R	
					JIX	
ut Ups and Co	olors:					

Item #	Putup	Ship Weight	Color	Notes	Item Desc
9L26026 008H100	100 FT	4.400 LB	GRAY		26 #26 STR PVC RIBBON

Detailed Specifications & Technical Data

9L26026 Flat - Gray Ribbon 9L260XX Series

Revision Date: 10-02-2012 Revision Number: 2

© 2015 Belden, Inc All Rights Reserved

All Rights Reserved. Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described herein are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability. Belden provides the information and specifications herein on an "AS IS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information or specifications described herein. All sales of Belden products are subject to Belden's standard terms and conditions of sale. Belden believes this product to be in compliance with EU RoHS (Directive 2002/95/EC, 27-Jan-2003). Material manufactured prior to the compliance date may be in stock at Belden facilities and in our Distributor's inventory. The information provided in this Product Disclosure, and belief at the date of its publication. The information provided bilden or post-real bulcet for the est of Belden's shared only as a general guide for the safe handling, storage, and any other operation of the product tiself or the one that it becomes a part of. This Product Disclosure is designed only as a general guide for the product. Regulatory information is for guidance purposes only. Product users are responsible for determining the applicability of legislation and regulations based on their individual usage of the product. Belden belcares this product to be in compliance with EU LVD (Low Voltage Directive 73/23/EEC), as amended by directive 93/68/EEC.