	1) CONSTRUCTION: CONDUCTOR: 26 AWG 7/34 STRANDED TINNED COPPER INSULATION: HIGH DENSITY POLYETHYLENE, .009" NOM. WALL THICKNESS PAIRS: COLOR CODED SINGLES TWISTED INTO PAIRS CABLE: (2) TWISTED PAIRS TWISTED TOGETHER AND WRAPPED WITH A FOAM					NOM. DIA. .019" .037" .074"	QWC0027
	SHIELDS:	POLYOLEFIN TAPE (100% COVERAGE) TO FORM A CABLE CORE.					27
	JACKET: SHALL BE APPLIED OVER THE BRAID. THERMOPLASTIC ELASTOMER, (COLOR, PE THICKNESS (PRESSURE) OVE				, .043" NOM. WALL E DIAMETER	.139" .225" ± .010" BY PI TAPE	
	TEMPERATURE WT./M', NOM., N JACKET IS WEL	E RATING, MAX. E RATING, MIN. NET LD SPATTER RESISTANT ILIGHT RESISTANT	-40 31. ⁻	7 LBS.	CTURER'S RECOMME	A.	נווס
I	TORSION TEST (1 LB LOAD, 3 JACKET CUTTII (6 MONTHS @ TENSILE ST ELONGATIC POE COMPLIAN	(PENDING) 960°, 71 CYCLES/MIN, @ 20 NG/MACHINING OIL RESIST 0 20°C) TRENGTH RETENTION, NOI ON RETENTION, NOM. NT (802.3af) TO 67 METERS EET CAT 5e CHANNEL REC	10)°C) 3 I TANCE M. 80 10 5 WHEN INSTALLED	MILLION CY MILLION CYC % 0% PER RECOM	CLE TEST (20X CABLI CLE TEST IMENDATIONS IN TIA	E O.D., MINIMUM R	
I	3) ELECTRICAL CHARACTERISTICS: SEE PAGE 2 4) AGENCY APPROVALS: NEC (UL) CMX OUTDOOR - CM CEC C(UL) CMX OUTDOOR - CM						
) APPLICATION: RoHS COMPLIANT MATERIALS. PASSES VW-1) PRINT: (WHITE INK ON BLACK JACKET, ALL OTHERS BLACK INK) QUABBIN DATAMAX EXTREME HIGH FLEX INDUSTRIAL ETHERNET/IP PATCH CORD 2 PR CAT 5e SF/UTP P/N (P/N		JACKET FOIL SHIELD BRAID BRAID BRAID				
I	PER CHART 1) C(UL)US TYPE CMX OUTDOOR - CM 2PR 26 AWG 75C SUN RES RoHS (LOT DESIGNATOR) (SEQUENTIAL FOOTAGE)			FOAM TAPE			
	7) COLOR CODE: 1. GREEN X WHITE/GREEN 2. ORANGE X WHITE/ORANGE 3) PACKAGING:		PAIR				
	TO BE PACKAG STANDARD PAG	GED AS PER QWC'S CKAGING			REV. 05 CHECKED: 05/2 TITLE	MD 20/14 IBM 22/14 SH FLEX INDUSTRIA	
	CUSTOMER APPROVAL:		DATE:		ETHERNET PA	TCH CORD CAT &	

DOCUMENT #0040 05/26/11 This document contains proprietary and confidential information which is the property of Quabbin Wire & Cable Co., Inc. and may not be copied or disclosed to others without the express written permission of Quabbin Wire & Cable Co., Inc.

CAPACITANCE, MUTUAL, NOM.	13.5 PF/FT. AT 1 MH					
	13.5 PF/FT. AT 1 MHz					
DIELECTRIC WITHSTANDING, MIN.	1500V RMS					
VOLTAGE RATING, MAX.	300V		QWC0027			
D.C. RESISTANCE, MAX.	14.0 Ω					
IMPEDANCE	100 ± 15 Ω 1-100 MHz					
IMPEDANCE, SMOOTHED	100 ± 10 Ω TYPICAL 5-100 MHz					
RETURN LOSS	1 ≤ <i>f</i> < 10 MHz 10 ≤ <i>f</i> < 20 MHz 20 ≤ <i>f</i> ≤ 100 MHz	20 + 6 LOG(<i>f</i>) dB MIN* 26 dB MIN* 26- 5 LOG(<i>f</i> /20) dB MIN*				
NEXT	1 ≤ <i>f</i> ≤ 100 MHz	35.3 - 15 LOG(<i>f</i> /100) dB MIN				
ACRF	1 ≤ <i>f</i> ≤ 100 MHz	23.8 - 20 LOG(<i>f</i> /100) dB MIN				
INSERTION LOSS	$1 \le f \le 100 \text{ MHz}$	1.5[1.967 \sqrt{f} + 0.023(f) + 0.050/ \sqrt{f}] dB MAX				
DELAY	1 ≤ <i>f</i> ≤ 100 MHz	534 + 36/√ <i>f</i> ns MAX				
DELAY SKEW	1 ≤ <i>f</i> ≤ 100 MHz	<25ns				
TCL	1 ≤ <i>f</i> ≤100 MHZ	30-10 LOG(<i>f</i>) dB, 40 dB MAX				
ELTCTL	1 ≤ <i>f</i> ≤30 MHZ	35-20 LOG(<i>f</i>)				
COUPLING ATTENUATION PER IEC 62153-4-9	30 ≤ <i>f</i> ≤ 100 MHZ	60 dB MINIMUM				
VELOCITY OF PROPAGATION	68%					
*PER ODVA VOLUME 2 ETHERNET/IP						
NOTE: ALL TESTING IS CONDUCTED OFF THE REEL.						
		Created 5/26/11 DRAWN: 05/20/14 REV. 05 CHECKED: 05/22/14 TITLE	N® .E			
CUSTOMER APPROVAL:	DATE:	2PR. ScTP HIGH FLEX INDUSTRIAL ETHERNET PATCH CORD CAT 5e	2PR. ScTP HIGH FLEX INDUSTRIAL			
DOCUMENT#004のもも20月1 This document contains proprietary disclosed to others without the available availab	and confidential information	DRAWING # QWC0027 2 0 which is the property of Quabbin Wire & Cable Co., Inc. and may not be copi	of 2			